login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Tree of Eratosthenes: a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).
20

%I #30 Mar 08 2016 05:13:39

%S 1,2,3,4,5,6,9,8,7,10,15,12,25,18,21,16,11,14,27,20,35,30,33,24,49,50,

%T 51,36,55,42,45,32,13,22,39,28,65,54,57,40,77,70,87,60,85,66,69,48,

%U 121,98,147,100,125,102,105,72,91,110,123,84,115,90,93,64,17,26,63,44,95,78,81,56,119,130,159,108,145,114,117,80

%N Tree of Eratosthenes: a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).

%C This sequence can be represented as a binary tree. Each child to the left is obtained by applying A250469 to the parent, and each child to the right is obtained by doubling the parent:

%C 1

%C |

%C ...................2...................

%C 3 4

%C 5......../ \........6 9......../ \........8

%C / \ / \ / \ / \

%C / \ / \ / \ / \

%C / \ / \ / \ / \

%C 7 10 15 12 25 18 21 16

%C 11 14 27 20 35 30 33 24 49 50 51 36 55 42 45 32

%C etc.

%C Sequence A252755 is the mirror image of the same tree. A253555(n) gives the distance of n from 1 in both trees.

%H Antti Karttunen, <a href="/A252753/b252753.txt">Table of n, a(n) for n = 0..8192</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).

%F As a composition of related permutations:

%F a(n) = A252755(A054429(n)).

%F a(n) = A250245(A005940(1+n)).

%F Other identities. For all n >= 1:

%F A055396(a(n)) = A001511(n). [A005940 has the same property.]

%F a(A003945(n)) = A001248(n) for n>=1. - _Peter Luschny_, Jan 13 2015

%t (* b = A250469 *)

%t b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]];

%t a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], 2 a[(n-1)/2]];

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Mar 08 2016 *)

%o (Scheme, with memoization-macro definec)

%o (definec (A252753 n) (cond ((<= n 2) (+ 1 n)) ((even? n) (A250469 (A252753 (/ n 2)))) (else (* 2 (A252753 (/ (- n 1) 2))))))

%Y Inverse: A252754.

%Y Row sums: A253787, products: A253788.

%Y Fixed points of a(n-1): A253789.

%Y Similar permutations: A005940, A252755, A054429, A250245.

%Y Cf. also A001248, A001511, A055396, A083221, A181565, A250469, A253555.

%K nonn,tabf,nice

%O 0,2

%A _Antti Karttunen_, Jan 02 2015