login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324106
Multiplicative with a(p^e) = A005940(p^e).
12
1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 15, 16, 11, 14, 21, 20, 27, 30, 45, 24, 49, 50, 75, 36, 125, 30, 81, 32, 45, 22, 45, 28, 55, 42, 75, 40, 77, 54, 105, 60, 35, 90, 135, 48, 121, 98, 33, 100, 245, 150, 75, 72, 63, 250, 375, 60, 625, 162, 63, 64, 125, 90, 39, 44, 135, 90, 99, 56, 91, 110, 147, 84, 135, 150, 189, 80, 143, 154, 231, 108, 55
OFFSET
1,2
COMMENTS
Question: are there any other numbers n besides 1 and those in A070776, for which a(n) = A005940(n)? At least not below 2^25. This is probably easy to prove.
LINKS
Michael De Vlieger, Fan style binary tree of a(n), n = 1..2^12, color coded to show the smallest values in the range r = (2^r - 1)..2^(r+1) in blue and highlighting the largest with red.
EXAMPLE
For n = 85 = 5*17, a(85) = A005940(5) * A005940(17) = 5*11 = 55. Note that A005940(5) is obtained from the binary expansion of 5-1 = 4, which is "100", and A005940(17) is obtained from the binary expansion of 17-1 = 16, which is "1000".
MATHEMATICA
nn = 128; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[Times @@ Map[a, Power @@@ FactorInteger[#]] &, nn] (* Michael De Vlieger, Sep 18 2022 *)
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i, 1]^f[i, 2])); };
CROSSREFS
Cf. A005940, A070776, A324107 (fixed points), A324108, A324109.
Sequence in context: A269387 A207801 A340364 * A252753 A357268 A005940
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Feb 15 2019
STATUS
approved