login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287274
Array read by antidiagonals: T(m,n) = number of dominating sets in the lattice (rook) graph K_m X K_n.
7
1, 3, 3, 7, 11, 7, 15, 51, 51, 15, 31, 227, 421, 227, 31, 63, 963, 3615, 3615, 963, 63, 127, 3971, 30517, 59747, 30517, 3971, 127, 255, 16131, 252231, 989295, 989295, 252231, 16131, 255, 511, 65027, 2054941, 16219187, 32260381, 16219187, 2054941, 65027, 511
OFFSET
1,2
COMMENTS
A set of vertices can be represented as an m X n binary matrix. If all rows contain at least one 1 then regardless of what is in each row the set will form a dominating set giving (2^n-1)^m solutions. Otherwise if only i<m rows contain at least one 1 then all columns must contain a 1 for the set to form a dominating set giving A183109(i,n) solutions.
LINKS
Stephan Mertens, Domination Polynomial of the Rook Graph, JIS 27 (2024) 24.3.7; arXiv:2401.00716 [math.CO], 2024.
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
T(m, n) = (2^n-1)^m + Sum_{i=1..m-1} binomial(m,i) * A183109(i,n).
EXAMPLE
Array begins:
=============================================================================
m\n| 1 2 3 4 5 6 7
---|-------------------------------------------------------------------------
1 | 1 3 7 15 31 63 127...
2 | 3 11 51 227 963 3971 16131...
3 | 7 51 421 3615 30517 252231 2054941...
4 | 15 227 3615 59747 989295 16219187 263425695...
5 | 31 963 30517 989295 32260381 1048220463 33884452717...
6 | 63 3971 252231 16219187 1048220463 67680006971 4358402146791...
7 | 127 16131 2054941 263425695 33884452717 4358402146791 559876911043381...
...
MATHEMATICA
b[m_, n_] := Sum[(-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}];
a[m_, n_] := (2^n - 1)^m + Sum[ b[i, n]*Binomial[m, i], {i, 1, m - 1}];
Table[a[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 12 2017, adapted from PARI *)
PROG
(PARI)
b(m, n)=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
a(m, n)=(2^n-1)^m + sum(i=1, m-1, b(i, n)*binomial(m, i));
for (i=1, 7, for(j=1, 7, print1(a(i, j), ", ")); print);
CROSSREFS
Main diagonal is A287065.
Row 2 is A191341.
Cf. A183109, A088699 (independent vertex sets), A290632.
Sequence in context: A052989 A358823 A252750 * A305099 A292141 A374687
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 22 2017
STATUS
approved