The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107443 Expansion of g.f.: (1+3*x^2)/((1-x)*(1+x+2*x^2)*(1-x+2*x^2)). 2
 1, 1, 1, 1, -3, -3, 9, 9, -11, -11, 1, 1, 45, 45, -135, -135, 229, 229, -143, -143, -483, -483, 2025, 2025, -4139, -4139, 4321, 4321, 3597, 3597, -28071, -28071, 69829, 69829, -97199, -97199, 12285, 12285, 351945, 351945, -1104971, -1104971, 1907137, 1907137, -1301523, -1301523, -3723975, -3723975 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-3,3,-4,4). FORMULA a(2n) = a(2n+1) = A174565(n). a(n) = (1 - 2*(-1)^n*A001607(n) + A001607(n+1))/2. - G. C. Greubel, Mar 24 2024 MAPLE with(gfun): seriestolist(series((3*x^2+1)/((1-x)*(2*x^2+x+1)*(2*x^2-x+1)), x=0, 50)); MATHEMATICA CoefficientList[Series[(1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)), {x, 0, 50}], x] (* G. C. Greubel, Mar 24 2024 *) PROG (Magma) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) )); // G. C. Greubel, Mar 24 2024 (SageMath) def A107443_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) ).list() A107443_list(50) # G. C. Greubel, Mar 24 2024 CROSSREFS Cf. A001607, A174565. Sequence in context: A064235 A098355 A183429 * A204099 A062234 A168329 Adjacent sequences: A107440 A107441 A107442 * A107444 A107445 A107446 KEYWORD easy,sign AUTHOR Creighton Dement, May 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 00:35 EDT 2024. Contains 372666 sequences. (Running on oeis4.)