|
|
A125565
|
|
Primes p=prime(i) of level (1,12), i.e., such that A118534(i)=prime(i-12).
|
|
5
|
|
|
15014557, 27001043, 29602093, 50234633, 87028433, 91814759, 94529221, 103336843, 112840309, 113774329, 113961299, 114887657, 115528969, 118974901, 129235273, 144352123, 146127721, 160370491, 163559197, 169274999, 188168059, 188895919, 191829409, 198823447
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This subsequence of A125830 and of A162174 gives primes of level (1,12): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
|
|
LINKS
|
|
|
EXAMPLE
|
prime(5316164) - prime(5316163) = 91814831 - 91814759 = 91814759 - 91814687 = prime(5316163) - prime(5316163-12) and prime(5316163) has level 1 in A117563, so prime(5316163)=91814759 has level (1,12).
|
|
CROSSREFS
|
Cf. A006562 (primes of level (1,1)), A117078, A117563, A006562, A117876, A118464, A118467, A119402, A119403, A119404.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Definition and comment reworded following suggestions from the author. - M. F. Hasler, Nov 30 2009
|
|
STATUS
|
approved
|
|
|
|