login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125564
Theta series of 5-dimensional lattice A_5^{+3}.
1
1, 0, 30, 30, 0, 132, 90, 0, 270, 140, 0, 420, 270, 0, 600, 360, 0, 840, 330, 0, 1092, 660, 0, 1200, 810, 0, 1500, 570, 0, 1980, 1020, 0, 2190, 1260, 0, 2280, 1100, 0, 2460, 1560, 0, 3360, 1620, 0, 3780, 1452, 0, 3360, 2190, 0, 3930, 2340, 0, 4620, 1710, 0, 5400, 2940
OFFSET
0,3
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110 and 116.
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices I: Quadratic Forms of Small Determinant, Proc. Royal Soc. London, Series A, 418 (1988), 17-41.
G. Nebe and N. J. A. Sloane, Home page for this lattice
EXAMPLE
1 + 30*q^4 + 30*q^6 + 132*q^10 + 90*q^12 + 270*q^16 + 140*q^18 + 420*q^22 + ...
MATHEMATICA
al[n_, l_, p_, nn_] := Sum[Exp[-2 Pi I k l/n] EllipticTheta[3, Pi k/n, q^p]^n, {k, n}] / n / Sum[q^(p n (m + l/n)^2), {m, -nn, nn}] + O[q]^nn;
as[n_, s_, nn_] := CoefficientList[FullSimplify[Normal@Sum[al[n, l, n/s, nn], {l, s, n, s}]], q];
as[6, 1, 30] (*A023917*)
as[6, 2, 30][[;; ;; 2]] (*this sequence*)
as[6, 3, 30] (*A125561*)
(* Andrey Zabolotskiy, Feb 17 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 31 2007
EXTENSIONS
Typo in name corrected by Andrey Zabolotskiy, Feb 16 2022
STATUS
approved