Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 17 2022 07:25:12
%S 1,0,30,30,0,132,90,0,270,140,0,420,270,0,600,360,0,840,330,0,1092,
%T 660,0,1200,810,0,1500,570,0,1980,1020,0,2190,1260,0,2280,1100,0,2460,
%U 1560,0,3360,1620,0,3780,1452,0,3360,2190,0,3930,2340,0,4620,1710,0,5400,2940
%N Theta series of 5-dimensional lattice A_5^{+3}.
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110 and 116.
%H John Cannon, <a href="/A125564/b125564.txt">Table of n, a(n) for n = 0..5000</a>
%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1098/rspa.1988.0072">Low-Dimensional Lattices I: Quadratic Forms of Small Determinant</a>, Proc. Royal Soc. London, Series A, 418 (1988), 17-41.
%H LMFDB, <a href="https://lmfdb.org/Lattice/5.162.12.1.1">Integral lattice 5.162.12.1.1</a>
%H G. Nebe and N. J. A. Sloane, <a href="https://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/P5.2.html">Home page for this lattice</a>
%e 1 + 30*q^4 + 30*q^6 + 132*q^10 + 90*q^12 + 270*q^16 + 140*q^18 + 420*q^22 + ...
%t al[n_, l_, p_, nn_] := Sum[Exp[-2 Pi I k l/n] EllipticTheta[3, Pi k/n, q^p]^n, {k, n}] / n / Sum[q^(p n (m + l/n)^2), {m, -nn, nn}] + O[q]^nn;
%t as[n_, s_, nn_] := CoefficientList[FullSimplify[Normal@Sum[al[n, l, n/s, nn], {l, s, n, s}]], q];
%t as[6, 1, 30] (*A023917*)
%t as[6, 2, 30][[;; ;; 2]] (*this sequence*)
%t as[6, 3, 30] (*A125561*)
%t (* _Andrey Zabolotskiy_, Feb 17 2022 *)
%Y Cf. A008445, A125561, A023917.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Jan 31 2007
%E Typo in name corrected by _Andrey Zabolotskiy_, Feb 16 2022