login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216202 Primes p=prime(i) of level (1,7), i.e., such that A118534(i) = prime(i-7). 1
22307, 39251, 81569, 85853, 132763, 159233, 179849, 188029, 281431, 370949, 373393, 421741, 480587, 607363, 630737, 741721, 770669, 782011, 812527, 879743, 909917, 928703, 1008263, 1037347, 1095859, 1111091, 1126897, 1173631, 1260911, 1382681, 1398781, 1439447 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

LINKS

Fabien Sibenaler, Table of n, a(n) for n = 1..10000

EXAMPLE

81569 = prime(7980) is a term because:

prime(7981) = 81611, prime(7973) = 81527;

2*prime(7980) - prime(7981) = prime(7973).

MATHEMATICA

With[{m = 7}, Prime@ Select[Range[m + 1, 10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)

CROSSREFS

Subsequence of A125830 and A162174.

Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404, A125565, A125572, A125574, A125576, A125623.

Sequence in context: A204333 A252774 A253042 * A154094 A206656 A329787

Adjacent sequences:  A216199 A216200 A216201 * A216203 A216204 A216205

KEYWORD

nonn

AUTHOR

Fabien Sibenaler, Mar 12 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)