|
|
A216202
|
|
Primes p=prime(i) of level (1,7), i.e., such that A118534(i) = prime(i-7).
|
|
1
|
|
|
22307, 39251, 81569, 85853, 132763, 159233, 179849, 188029, 281431, 370949, 373393, 421741, 480587, 607363, 630737, 741721, 770669, 782011, 812527, 879743, 909917, 928703, 1008263, 1037347, 1095859, 1111091, 1126897, 1173631, 1260911, 1382681, 1398781, 1439447
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
|
|
LINKS
|
|
|
EXAMPLE
|
81569 = prime(7980) is a term because:
prime(7981) = 81611, prime(7973) = 81527;
2*prime(7980) - prime(7981) = prime(7973).
|
|
MATHEMATICA
|
With[{m = 7}, Prime@ Select[Range[m + 1, 10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
|
|
CROSSREFS
|
Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404, A125565, A125572, A125574, A125576, A125623.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|