|
|
A125623
|
|
Primes p=prime(i) of level (1,16), i.e., such that A118534(i)=prime(i-16).
|
|
6
|
|
|
356604959, 613768081, 709208323, 950803363, 979872743, 1174872271, 1186433617, 1625945609, 1796767963, 1840621901, 2348698453, 2547482281, 3385901059, 3446679371, 3512406283, 3735873397, 4080198391, 4106437259
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This subsequence of A125830 and of A162174 gives primes of level (1,16): If the i-th prime p(i) has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k), then we say that p(i) has level (1,k).
|
|
LINKS
|
Fabien Sibenaler, Table of n, a(n) for n = 1..60
|
|
EXAMPLE
|
prime(48470200)-prime(48470199)=prime(48470199)-prime(48470199-16)
=prime(48470199)-prime(48470183): 950803519-950803363=950803363-950803207=156=6*26,
prime(48470199) has level 1 in A117563, so prime(48470199)=950803363 has level(1,16).
|
|
CROSSREFS
|
Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.
Sequence in context: A227933 A159300 A308636 * A069319 A104850 A016871
Adjacent sequences: A125620 A125621 A125622 * A125624 A125625 A125626
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Rémi Eismann and Fabien Sibenaler, Jan 27 2007
|
|
EXTENSIONS
|
Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009
|
|
STATUS
|
approved
|
|
|
|