login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125625
Number of elements in the semigroup of type K_n.
0
1, 2, 5, 18, 115, 1710, 83973, 22263378, 64146328635, 5387481983035854, 53332505278384935836485, 448356696524549059043145139274042, 52321110785739610206886887435107004491768788251, 4402157583106925818769478699470667613674438846830415891359277374958, 71336346872409035510345323533390649100576348044074421590685110464047512124710404684631077386973
OFFSET
0,2
COMMENTS
The semigroup K_3 with 3 generators occurs in convexity theory; K_n is the generic semigroup with n generators.
In the paper of Kudryavtseva and Mazorchuk it is shown that the n-th term of this sequence gives the number of words in the alphabet 1,2,...,n such that between any repetitions of any letter there must occur both a smaller and a bigger letter (in the natural order). For example, the word 2132 is allowed while 3213 is not. [V. Mazorchuk, Aug 24 2011]
LINKS
S. Alsaody, Determining the Elements of a Semigroup, Uppsala, Sweden: Dept. Of Mathematics, Uppsala University, 2007, Report No. 2007:3.
Alessandro D'Andrea and Salvatore Stella, The cardinality of Kiselman's semigroups grows double-exponentially, arXiv:2303.13149 [math.CO], 2023.
L. Forsberg, Effective representations of Hecke-Kiselman monoids of type A, arXiv preprint arXiv:1205.0676 [math.RT], 2012-2017. - From N. J. A. Sloane, Oct 13 2012
C. O. Kiselman, A Semigroup of Operators in Convexity Theory Trans. Am, Math. Soc., 354 (2002), No. 5, pp. 2035-2053.
G. Kudryavtseva and V. Mazorchuk, On Kiselman's semigroup, arXiv:math/0511374 [math.GR], 2005; Preprint Uppsala University 2005, published in: Yokohama Math. J. 55 (2009), no.1, 21-46.
M. Selin, Source code (C++) for algorithm.
PROG
(Magma) /* program for a(6) */ F<a, b, c, d, e, f> := FreeMonoid(6); Q<a, b, c, d, e, f> := quo< F | a^2 = a, b^2 = b, c^2 = c, d^2 = d, e^2 = e, f^2 = f, a*b*a = b*a*b = a*b, a*c*a = c*a*c = a*c, a*d*a = d*a*d = a*d, a*e*a = e*a*e = a*e, a*f*a = f*a*f = a*f, b*c*b = c*b*c = b*c, b*d*b = d*b*d = b*d, b*e*b = e*b*e = b*e, b*f*b = f*b*f = b*f, c*d*c = d*c*d = c*d, c*e*c = e*c*e = c*e, c*f*c = f*c*f = c*f, d*e*d = e*d*e = d*e, d*f*d = f*d*f = d*f, e*f*e = f*e*f = e*f >; M<a, b, c, d, e, f> := RWSMonoid(Q); Order(M); /* Klaus Brockhaus, Mar 02 2007 */
CROSSREFS
Sequence in context: A005805 A058338 A006896 * A281532 A097584 A197855
KEYWORD
nonn
AUTHOR
Seidon Alsaody (Seidon.Alsaody.5527(AT)student.uu.se), Jan 27 2007
EXTENSIONS
a(6) from Klaus Brockhaus, Mar 02 2007
More terms from M. Selin (mxrten(AT)kth.se), Jan 16 2008, Jan 25 2008
STATUS
approved