The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125626 Numbers n whose reverse binary representation has the following property: let a 0 mean "halving" and a 1 mean "k -> 3k+1". The number describes an operation k -> f_n(k). If the equation f_n(k) = k has a positive solution, n is a term in the sequence. 5
 4, 8, 16, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 144, 145, 146, 148, 152, 160, 161, 162, 164, 168, 176, 192, 193, 194, 196, 200, 208, 224, 256, 257, 258, 259, 260 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 COMMENTS The terms in this sequence have the following characterization. Suppose the binary expansion of n contains i 1's and j 0's. Then it is easy to see that n is in the sequence if and only if 3^i < 2^j, or i/j < log 2 / log 3 = 0.630929753... - David Applegate and N. J. A. Sloane, Feb 01 2007 Note that f_n(x) is always a linear function of x. The reverse binary expansions of the first few terms are: 001 0001 00001 000001 100001 010001 001001 000101 000011 0000001 1000001 0100001 0010001 0001001 0000101 0000011 00000001 10000001 01000001 11000001 00100001 ... Could be used in conjunction with the Collatz (or 3x+1) conjecture. If the positive solution k is an integer (most are not) then a cycle exists. If this cycle does not contain a 1 and the sequence of steps agrees with what Collatz's rule tells you to do when you start with k, then the Collatz conjecture would be false. LINKS Table of n, a(n) for n=4..53. EXAMPLE Consider the term 200: its binary representation is 11001000. Reversing this gives 00010011. We solve (3*(3*(((3*(((k/2)/2)/2)+1)/2)/2)+1)+1) = k and find k = 40. Since k is positive, 200 is a member of the sequence. PROG (C) #include #include #include void multiply(float *coef, float *cons) { (*coef) *= 3; (*cons) = 3*(*cons)+1; } void divide(float *coef, float *cons) { (*coef) /= 2; (*cons) /= 2; } int main() { int a, b, c, n; float coef, cons, final; char data[30], sequence[30]; for (a = 1; a < 500; a++) { coef = 1; cons = 0; c = a; sequence[0] = ''; for (b = 1; b < 12; b++) //12 is arbitrary; it allows for "a" up to 2^12 { if (c != 0) { if (c % 2) { sprintf(sequence, "%s1", sequence); multiply(&coef, &cons); } else { sprintf(sequence, "%s0", sequence); divide(&coef, &cons); } c = trunc(c/2); } else break; } if (coef >= 1.0) { coef -= 1.0; cons *= -1.0; } else coef = 1.0-coef; final = cons/coef; if (final > 0) { sprintf(data, "%10.3f %s %d ", final, sequence, a); printf(data); } } return 0; } CROSSREFS For the values of n for which the fixed point k is a positive (or any) integer, see A125754-A125757. Cf. A112695, A125710, A125711. Sequence in context: A329778 A355391 A053163 * A141031 A061011 A359777 Adjacent sequences: A125623 A125624 A125625 * A125627 A125628 A125629 KEYWORD easy,nonn AUTHOR Nicholas Sanders (gummybean(AT)gmail.com), Jan 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 12:36 EDT 2024. Contains 374284 sequences. (Running on oeis4.)