login
A355391
Position of first appearance of n in A181591 = binomial(bigomega(n), omega(n)).
2
1, 4, 8, 16, 32, 24, 128, 256, 512, 48, 2048, 4096, 8192, 16384, 96, 65536, 131072, 262144, 524288, 240, 192, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 384, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 480, 768, 137438953472
OFFSET
1,2
COMMENTS
The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.
We have A181591(2^k) = k, so the sequence is fully defined. Positions meeting this maximum are A185024, complement A006987.
LINKS
FORMULA
binomial(bigomega(a(n)), omega(a(n))) = n.
EXAMPLE
The terms together with their prime indices begin:
1: {}
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
32: {1,1,1,1,1}
24: {1,1,1,2}
128: {1,1,1,1,1,1,1}
256: {1,1,1,1,1,1,1,1}
512: {1,1,1,1,1,1,1,1,1}
48: {1,1,1,1,2}
2048: {1,1,1,1,1,1,1,1,1,1,1}
4096: {1,1,1,1,1,1,1,1,1,1,1,1}
8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
96: {1,1,1,1,1,2}
65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
131072: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
262144: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
524288: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
240: {1,1,1,1,2,3}
192: {1,1,1,1,1,1,2}
MATHEMATICA
s=Table[Binomial[PrimeOmega[n], PrimeNu[n]], {n, 1000}];
Table[Position[s, k][[1, 1]], {k, Select[Union[s], SubsetQ[s, Range[#]]&]}]
PROG
(PARI) f(n) = binomial(bigomega(n), omega(n)); \\ A181591
a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Jul 10 2022
CROSSREFS
Positions of powers of 2 are A185024, complement A006987.
Counting multiplicity gives A355386.
The sorted version is A355392.
A000005 counts divisors.
A001221 counts prime factors without multiplicity.
A001222 count prime factors with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.
Sequence in context: A298803 A320947 A329778 * A053163 A125626 A141031
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 04 2022
EXTENSIONS
a(22)-a(28) from Michel Marcus, Jul 10 2022
a(29)-a(37) from Amiram Eldar, Jul 10 2022
STATUS
approved