OFFSET
1,2
COMMENTS
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..168
FORMULA
binomial(bigomega(a(n)), omega(a(n))) = n.
EXAMPLE
The terms together with their prime indices begin:
1: {}
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
32: {1,1,1,1,1}
24: {1,1,1,2}
128: {1,1,1,1,1,1,1}
256: {1,1,1,1,1,1,1,1}
512: {1,1,1,1,1,1,1,1,1}
48: {1,1,1,1,2}
2048: {1,1,1,1,1,1,1,1,1,1,1}
4096: {1,1,1,1,1,1,1,1,1,1,1,1}
8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
96: {1,1,1,1,1,2}
65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
131072: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
262144: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
524288: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
240: {1,1,1,1,2,3}
192: {1,1,1,1,1,1,2}
MATHEMATICA
s=Table[Binomial[PrimeOmega[n], PrimeNu[n]], {n, 1000}];
Table[Position[s, k][[1, 1]], {k, Select[Union[s], SubsetQ[s, Range[#]]&]}]
PROG
(PARI) f(n) = binomial(bigomega(n), omega(n)); \\ A181591
a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Jul 10 2022
CROSSREFS
Counting multiplicity gives A355386.
The sorted version is A355392.
A000005 counts divisors.
A001221 counts prime factors without multiplicity.
A001222 count prime factors with multiplicity.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 04 2022
EXTENSIONS
a(22)-a(28) from Michel Marcus, Jul 10 2022
a(29)-a(37) from Amiram Eldar, Jul 10 2022
STATUS
approved