%I #21 Jul 10 2022 13:23:42
%S 1,4,8,16,32,24,128,256,512,48,2048,4096,8192,16384,96,65536,131072,
%T 262144,524288,240,192,4194304,8388608,16777216,33554432,67108864,
%U 134217728,384,536870912,1073741824,2147483648,4294967296,8589934592,17179869184,480,768,137438953472
%N Position of first appearance of n in A181591 = binomial(bigomega(n), omega(n)).
%C The statistic omega = A001221 counts distinct prime factors (without multiplicity).
%C The statistic bigomega = A001222 counts prime factors with multiplicity.
%C We have A181591(2^k) = k, so the sequence is fully defined. Positions meeting this maximum are A185024, complement A006987.
%H Amiram Eldar, <a href="/A355391/b355391.txt">Table of n, a(n) for n = 1..168</a>
%F binomial(bigomega(a(n)), omega(a(n))) = n.
%e The terms together with their prime indices begin:
%e 1: {}
%e 4: {1,1}
%e 8: {1,1,1}
%e 16: {1,1,1,1}
%e 32: {1,1,1,1,1}
%e 24: {1,1,1,2}
%e 128: {1,1,1,1,1,1,1}
%e 256: {1,1,1,1,1,1,1,1}
%e 512: {1,1,1,1,1,1,1,1,1}
%e 48: {1,1,1,1,2}
%e 2048: {1,1,1,1,1,1,1,1,1,1,1}
%e 4096: {1,1,1,1,1,1,1,1,1,1,1,1}
%e 8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
%e 16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%e 96: {1,1,1,1,1,2}
%e 65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%e 131072: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%e 262144: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%e 524288: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%e 240: {1,1,1,1,2,3}
%e 192: {1,1,1,1,1,1,2}
%t s=Table[Binomial[PrimeOmega[n],PrimeNu[n]],{n,1000}];
%t Table[Position[s,k][[1,1]],{k,Select[Union[s],SubsetQ[s,Range[#]]&]}]
%o (PARI) f(n) = binomial(bigomega(n), omega(n)); \\ A181591
%o a(n) = my(k=1); while (f(k) != n, k++); k; \\ _Michel Marcus_, Jul 10 2022
%Y Positions of powers of 2 are A185024, complement A006987.
%Y Counting multiplicity gives A355386.
%Y The sorted version is A355392.
%Y A000005 counts divisors.
%Y A001221 counts prime factors without multiplicity.
%Y A001222 count prime factors with multiplicity.
%Y A070175 gives representatives for bigomega and omega, triangle A303555.
%Y Cf. A022811, A056239 , A071625, A118914, A181819, A323014, A323023, A355383 (with multiplicity A339006), A355384.
%K nonn
%O 1,2
%A _Gus Wiseman_, Jul 04 2022
%E a(22)-a(28) from _Michel Marcus_, Jul 10 2022
%E a(29)-a(37) from _Amiram Eldar_, Jul 10 2022