login
A355390
Number of ordered pairs of distinct integer partitions of n.
1
0, 0, 2, 6, 20, 42, 110, 210, 462, 870, 1722, 3080, 5852, 10100, 18090, 30800, 53130, 87912, 147840, 239610, 392502, 626472, 1003002, 1573770, 2479050, 3831806, 5931660, 9057090, 13819806, 20834660, 31399212, 46806122, 69697452, 102870306, 151523790, 221488806
OFFSET
0,3
FORMULA
a(n) = 2*A355389(n) = 2*binomial(A000041(n), 2).
EXAMPLE
The a(0) = 0 through a(3) = 6 pairs:
. . (11)(2) (21)(3)
(2)(11) (3)(21)
(111)(3)
(3)(111)
(111)(21)
(21)(111)
MATHEMATICA
Table[Length[Select[Tuples[IntegerPartitions[n], 2], UnsameQ@@#&]], {n, 0, 15}]
PROG
(PARI) a(n) = 2*binomial(numbpart(n), 2); \\ Michel Marcus, Jul 05 2022
CROSSREFS
Without distinctness we have A001255, unordered A086737.
The version for compositions is A020522, unordered A006516.
The unordered version is A355389.
A000041 counts partitions, strict A000009.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
Sequence in context: A087134 A370494 A036689 * A226326 A139115 A193538
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 04 2022
STATUS
approved