OFFSET
1,2
COMMENTS
a(n) is also the number of dominoes, among all domino tilings of the 2 x n rectangle, sharing a contiguous path of length at least 2 with the boundary of the rectangle.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
B. E. Tenner, Tiling-based models of perimeter and area, arXiv:1811.00082 [math.CO], 2018.
Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
FORMULA
a(n) = a(n-1) + a(n-2) + 2*Fibonacci(n-1) for n > 3.
From Colin Barker, Nov 02 2018: (Start)
G.f.: x*(1 + 2*x - x^2 - 2*x^3 - x^4) / (1 - x - x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>5.
a(n) = 2^(1-n)*(-4*sqrt(5)*((1-sqrt(5))^n - (1+sqrt(5))^n) + 5*((1-sqrt(5))^n + (1+sqrt(5))^n)*n) / 25 for n>1.
(End)
EXAMPLE
a(4) = 16 because among the five domino tilings of the 2 X 4 rectangle, 16 dominoes share a length 2 side with the boundary.
MATHEMATICA
Rest@ CoefficientList[Series[x (1 + 2 x - x^2 - 2 x^3 - x^4)/(1 - x - x^2)^2, {x, 0, 35}], x] (* Michael De Vlieger, Nov 05 2018 *)
PROG
(PARI) Vec(x*(1 + 2*x - x^2 - 2*x^3 - x^4) / (1 - x - x^2)^2 + O(x^40)) \\ Colin Barker, Nov 02 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bridget Tenner, Oct 24 2018
STATUS
approved