OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * (f(q) * f(-q^16) / (f(-q) * f(q^4)))^2 = q * (chi(-q^2) * chi(-q^4) / (chi(-q) * chi(-q^8))^2)^2 in powers of q where chi(), f() are Ramanujan theta functions.
Expansion of (eta(q^2)^3 * eta(q^16)^2 / (eta(q)^2 * eta(q^8)^3))^2 in powers of q.
Euler transform of period 16 sequence [ 4, -2, 4, -2, 4, -2, 4, 4, 4, -2, 4, -2, 4, -2, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A215346.
a(n) ~ exp(sqrt(n)*Pi) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
q + 4*q^2 + 8*q^3 + 16*q^4 + 30*q^5 + 48*q^6 + 80*q^7 + 128*q^8 + 197*q^9 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[((1+x^k)^3 * (1-x^k) * (1+x^(8*k))^2 / (1-x^(8*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]*EllipticTheta[2, 0, q^4]/(2*EllipticTheta[3, 0, -q]*EllipticTheta[3, 0, q^4]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 07 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)^3))^2, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 08 2012
STATUS
approved