login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215348
Expansion of q * phi(q) * psi(q^8) / (phi(-q) * phi(q^4)) in powers of q where phi(), psi() are Ramanujan theta functions.
7
1, 4, 8, 16, 30, 48, 80, 128, 197, 312, 472, 704, 1046, 1504, 2160, 3072, 4306, 6036, 8360, 11488, 15712, 21264, 28656, 38400, 51127, 67864, 89552, 117632, 153926, 200352, 259904, 335872, 432336, 554952, 709728, 904784, 1150142, 1457136, 1841200, 2320128
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * (f(q) * f(-q^16) / (f(-q) * f(q^4)))^2 = q * (chi(-q^2) * chi(-q^4) / (chi(-q) * chi(-q^8))^2)^2 in powers of q where chi(), f() are Ramanujan theta functions.
Expansion of (eta(q^2)^3 * eta(q^16)^2 / (eta(q)^2 * eta(q^8)^3))^2 in powers of q.
Euler transform of period 16 sequence [ 4, -2, 4, -2, 4, -2, 4, 4, 4, -2, 4, -2, 4, -2, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A215346.
a(n) = -(-1)^n * A215349(n). a(2*n) = 4 * A107035(n). Convolution inverse of A215346.
a(n) ~ exp(sqrt(n)*Pi) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
q + 4*q^2 + 8*q^3 + 16*q^4 + 30*q^5 + 48*q^6 + 80*q^7 + 128*q^8 + 197*q^9 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[((1+x^k)^3 * (1-x^k) * (1+x^(8*k))^2 / (1-x^(8*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]*EllipticTheta[2, 0, q^4]/(2*EllipticTheta[3, 0, -q]*EllipticTheta[3, 0, q^4]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 07 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)^3))^2, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 08 2012
STATUS
approved