login
A298803
Growth series for group with presentation < S, T : S^3 = T^3 = (S*T)^4 = 1 >.
1
1, 4, 8, 16, 30, 50, 88, 150, 260, 448, 768, 1328, 2284, 3930, 6776, 11662, 20082, 34592, 59560, 102570, 176642, 304180, 523830, 902084, 1553452, 2675184, 4606892, 7933444, 13662066, 23527220, 40515838, 69771678, 120152672, 206912968, 356321478, 613615442
OFFSET
0,2
FORMULA
G.f.: (1 + 4*x + 7*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 3*x^6 - 2*x^7) / ((1 + x + x^2)*(1 - x - x^2 - x^3 + x^4)). [Corrected by Colin Barker, Feb 04 2018]
a(n) = a(n-2) + 3*a(n-3) + a(n-4) - a(n-6) for n>7. - Colin Barker, Feb 04 2018
MATHEMATICA
LinearRecurrence[{0, 1, 3, 1, 0, -1}, {1, 4, 8, 16, 30, 50, 88, 150}, 40] (* Harvey P. Dale, May 03 2019 *)
PROG
(Magma)
R<x> := RationalFunctionField(Integers());
PSR25 := PowerSeriesRing(Integers():Precision := 25);
FG<S, T> := FreeGroup(2);
TG := quo<FG | S^3, T^3, (S*T)^4 >;
f, A :=IsAutomaticGroup(TG);
gf := GrowthFunction(A);
R!gf;
Coefficients(PSR25!gf);
(PARI) Vec((1 + 4*x + 7*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 3*x^6 - 2*x^7) / ((1 + x + x^2)*(1 - x - x^2 - x^3 + x^4)) + O(x^40)) \\ Colin Barker, Feb 04 2018
CROSSREFS
Sequence in context: A215349 A215348 A301144 * A320947 A329778 A355391
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Feb 04 2018
STATUS
approved