OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 20*x^4 + 81*x^5 + 272*x^6 + 1144*x^7 + 6147*x^8 + 30859*x^9 + 158137*x^10 + 955988*x^11 + 5995439*x^12 + ...
such that A(x) = P(x) * Q(x) where
P(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + ... + x^n * (1+x)^(n^2) + ...
Q(x) = 1 + x/(1+x) + x^2/(1+x)^4 + x^3/(1+x)^9 + x^4/(1+x)^16 + x^5/(1+x)^25 + x^6/(1+x)^36 + x^7/(1+x)^49 + ... + x^n / (1+x)^(n^2) + ...
Explicitly,
P(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + 822422*x^11 + ... + A121689(n)*x^n + ...
Q(x) = 1 + x - 2*x^3 + x^4 + 11*x^5 - 19*x^6 - 86*x^7 + 365*x^8 + 581*x^9 - 7336*x^10 + 6061*x^11 + 142946*x^12 - 556061*x^13 + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, x^m*(1+x + x*O(x^n))^(m^2) ) * sum(m=0, n, x^m/(1+x + x*O(x^n))^(m^2) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2018
STATUS
approved