login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228833
a(n) = Sum_{k=0..[n/2]} binomial((n-k)*k, k^2).
3
1, 1, 2, 3, 5, 20, 77, 437, 5509, 54475, 1031232, 31874836, 789351469, 47552777430, 3302430043985, 223753995897916, 39177880844093733, 5954060239110086680, 1226026438114057710320, 551315671593483499670137, 188615011023291125237647365, 124995445742889226418307452940
OFFSET
0,3
COMMENTS
Equals antidiagonal sums of triangle A228832.
FORMULA
Limit n->infinity a(n)^(1/n^2) = ((1-r)/(1-2*r))^(r/2) = 1.171233876693210503..., where r = A323773 = 0.366320150305283... is the root of the equation (1-2*r)^(4*r-1) * (1-r)^(1-2*r) = r^(2*r). - Vaclav Kotesovec, Sep 06 2013
MATHEMATICA
Table[Sum[Binomial[(n-k)*k, k^2], {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Sep 06 2013 *)
PROG
(PARI) {a(n)=sum(k=0, n\2, binomial(n*k-k^2, k^2))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A228832.
Sequence in context: A054798 A127078 A184252 * A320950 A291673 A076383
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 04 2013
STATUS
approved