OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (eta(q)^2 * eta(q^4))^2 in powers of q.
Euler transform of period 4 sequence [ -4, -4, -4, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 1024 (t / i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A034952.
G.f. (Product_{k>0} (1 - x^k)^2 * (1 - x^(4*k)))^2.
EXAMPLE
G.f. = 1 - 4*x + 2*x^2 + 8*x^3 - 7*x^4 + 4*x^5 - 14*x^6 - 8*x^7 + 18*x^8 + ...
G.f. = q - 4*q^3 + 2*q^5 + 8*q^7 - 7*q^9 + 4*q^11 - 14*q^13 - 8*q^15 + 18*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4 * QPochhammer[ x^4]^2, {x, 0 , n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A))^2, n))};
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Michael Somos, Sep 04 2013
STATUS
approved