login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034952
Expansion of eta(16z)^4*eta(4z)^2.
1
1, -2, -1, 2, -3, 10, 2, -8, -4, -14, 7, 4, 18, -2, -13, 14, 1, 14, -21, -4, -35, -14, 28, -6, 7, 38, 39, -30, 20, -36, -14, 0, 17, 4, -49, 14, -15, -22, -16, 66, -39, -10, 21, 42, 69, 82, -18, -80, -28, -50, 28, -70, -35, 14, 66, -56, 41, -32, 8, 52, -77, 42, 3, 36, 60
OFFSET
0,2
COMMENTS
Apparently this is the convolution square of A255252. - R. J. Mathar, Feb 22 2021
LINKS
EXAMPLE
q^3-2*q^7-1*q^11+2*q^15-3*q^19+...
MAPLE
nmax := 30;
eta := product(1-q^i, i=1..nmax) ; # eta=A010815
g := subs(q=q^4, eta)^4*eta^2 ;
g := taylor(g, q=0, nmax+1) ;
seq( coeftayl(g, q=0, i), i=0..nmax) ; # R. J. Mathar, Feb 22 2021
CROSSREFS
Cf. A010815.
Sequence in context: A252889 A155004 A176954 * A378754 A337549 A378755
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Feb 09 2000
STATUS
approved