login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378754
Dirichlet convolution of -A252748 and A323910.
0
1, 0, -1, -2, -1, -2, -3, -10, -10, -2, -1, -10, -3, -6, -5, -38, -1, -22, -3, -10, -11, -2, -5, -42, -14, -6, -60, -22, -1, -14, -5, -130, -5, -2, -11, -76, -3, -6, -11, -42, -1, -30, -3, -10, -36, -10, -5, -158, -46, -30, -5, -22, -5, -144, -5, -78, -11, -2, -1, -58, -5, -10, -64, -422, -11, -14, -3, -10, -17, -30
OFFSET
1,4
FORMULA
a(n) = Sum_{d|n} -A252748(d)*A323910(n/d).
PROG
(PARI)
A033879(n) = (n+n-sigma(n));
memoA323910 = Map();
A323910(n) = if(1==n, 1, my(v); if(mapisdefined(memoA323910, n, &v), v, v = -sumdiv(n, d, if(d<n, A033879(n/d)*A323910(d), 0)); mapput(memoA323910, n, v); (v)));
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A252748(n) = (A003961(n) - (2*n));
A378754(n) = sumdiv(n, d, -A252748(d)*A323910(n/d));
CROSSREFS
Cf. A033879, A252748, A323910, A378755 (Dirichlet inverse).
Sequence in context: A155004 A176954 A034952 * A337549 A378755 A306456
KEYWORD
sign,new
AUTHOR
Antti Karttunen, Dec 11 2024
STATUS
approved