Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Dec 11 2024 20:17:59
%S 1,0,-1,-2,-1,-2,-3,-10,-10,-2,-1,-10,-3,-6,-5,-38,-1,-22,-3,-10,-11,
%T -2,-5,-42,-14,-6,-60,-22,-1,-14,-5,-130,-5,-2,-11,-76,-3,-6,-11,-42,
%U -1,-30,-3,-10,-36,-10,-5,-158,-46,-30,-5,-22,-5,-144,-5,-78,-11,-2,-1,-58,-5,-10,-64,-422,-11,-14,-3,-10,-17,-30
%N Dirichlet convolution of -A252748 and A323910.
%H Antti Karttunen, <a href="/A378754/b378754.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%F a(n) = Sum_{d|n} -A252748(d)*A323910(n/d).
%o (PARI)
%o A033879(n) = (n+n-sigma(n));
%o memoA323910 = Map();
%o A323910(n) = if(1==n,1,my(v); if(mapisdefined(memoA323910,n,&v), v, v = -sumdiv(n,d,if(d<n,A033879(n/d)*A323910(d),0)); mapput(memoA323910,n,v); (v)));
%o A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A252748(n) = (A003961(n) - (2*n));
%o A378754(n) = sumdiv(n,d,-A252748(d)*A323910(n/d));
%Y Cf. A033879, A252748, A323910, A378755 (Dirichlet inverse).
%K sign,new
%O 1,4
%A _Antti Karttunen_, Dec 11 2024