login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378753
Dirichlet inverse of A378752, where A378752(n) = 2*sigma(n) - sigma(A003961(n)), and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
0
1, -2, -2, 3, -4, 8, -4, 6, 9, 12, -10, 2, -10, 16, 16, 24, -16, 2, -16, -4, 24, 24, -18, 32, 11, 28, 48, 4, -28, -32, -26, 96, 28, 36, 32, 83, -34, 40, 36, 20, -40, -32, -40, -22, 4, 48, -42, 152, 35, -2, 40, -14, -48, 80, 48, 64, 48, 60, -58, 80, -56, 64, 44, 384, 56, -80, -64, -40, 60, -64, -70, 370, -68, 76, 18
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A378752(n/d) * a(d).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A378752(n) = ((2*sigma(n)) - sigma(A003961(n)));
memoA378753 = Map();
A378753(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378753, n, &v), v, v = -sumdiv(n, d, if(d<n, A378752(n/d)*A378753(d), 0)); mapput(memoA378753, n, v); (v)));
CROSSREFS
Cf. A000203, A003973, A378752 (Dirichlet inverse).
Sequence in context: A302487 A032252 A112708 * A320009 A147558 A032243
KEYWORD
sign,new
AUTHOR
Antti Karttunen, Dec 11 2024
STATUS
approved