login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255252 Expansion of psi(x) * psi(-x)^2 in powers of x where psi() is a Ramanujan theta function. 0
1, -1, -1, 0, -2, 3, 2, 1, -1, -1, 1, -2, 1, -3, -2, -2, 3, 1, -1, 4, 3, -1, -1, 2, -4, 4, 1, 0, -1, -2, -3, -3, -4, 2, 3, -3, 0, 0, 5, 2, 0, -3, 2, -1, 4, 1, 0, 1, 3, 0, -2, 2, -1, -2, -4, -5, 2, 0, -7, 3, -4, 3, 1, 5, 2, -5, -1, -1, -3, 4, -1, 3, 4, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Table of n, a(n) for n=0..74.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of f(-x) * f(-x^4)^2 in powers of x where f() is a Ramanujan theta function.

Expansion of q^(-3/8) * eta(q) * eta(q^4)^2 in powers of q.

Euler transform of period 4 sequence [ -1, -1, -1, -3, ...].

G.f.: Product_{k>0} (1 - x^k) * (1 - x^(4*k))^2.

2 * a(n) = A034950(4*n + 1).

EXAMPLE

G.f. = 1 - x - x^2 - 2*x^4 + 3*x^5 + 2*x^6 + x^7 - x^8 - x^9 + x^10 + ...

G.f. = q^3 - q^11 - q^19 - 2*q^35 + 3*q^43 + 2*q^51 + q^59 - q^67 - q^75 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^4]^2, {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(1/2)]^2 / (4 x^(3/8)), {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2, n))};

CROSSREFS

Cf. A034950.

Sequence in context: A211994 A122402 A179008 * A174985 A008406 A039735

Adjacent sequences:  A255249 A255250 A255251 * A255253 A255254 A255255

KEYWORD

sign

AUTHOR

Michael Somos, Feb 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 14:12 EST 2018. Contains 299296 sequences. (Running on oeis4.)