login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255252 Expansion of psi(x) * psi(-x)^2 in powers of x where psi() is a Ramanujan theta function. 2
1, -1, -1, 0, -2, 3, 2, 1, -1, -1, 1, -2, 1, -3, -2, -2, 3, 1, -1, 4, 3, -1, -1, 2, -4, 4, 1, 0, -1, -2, -3, -3, -4, 2, 3, -3, 0, 0, 5, 2, 0, -3, 2, -1, 4, 1, 0, 1, 3, 0, -2, 2, -1, -2, -4, -5, 2, 0, -7, 3, -4, 3, 1, 5, 2, -5, -1, -1, -3, 4, -1, 3, 4, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of f(-x) * f(-x^4)^2 in powers of x where f() is a Ramanujan theta function.

Expansion of q^(-3/8) * eta(q) * eta(q^4)^2 in powers of q.

Euler transform of period 4 sequence [ -1, -1, -1, -3, ...].

G.f.: Product_{k>0} (1 - x^k) * (1 - x^(4*k))^2.

2 * a(n) = A034950(4*n + 1).

EXAMPLE

G.f. = 1 - x - x^2 - 2*x^4 + 3*x^5 + 2*x^6 + x^7 - x^8 - x^9 + x^10 + ...

G.f. = q^3 - q^11 - q^19 - 2*q^35 + 3*q^43 + 2*q^51 + q^59 - q^67 - q^75 + ...

MAPLE

A255252 := proc(n)

    local psi, x, i ;

    psi := add( A010054(i)*x^i, i=0..n) ;

    psi*subs(x=-x, psi)^2 ;

    coeftayl(%, x=0, n) ;

end proc:

seq(A255252(n), n=0..20) ; # R. J. Mathar, Feb 22 2021

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^4]^2, {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(1/2)]^2 / (4 x^(3/8)), {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2, n))};

CROSSREFS

Cf. A034950.

Sequence in context: A211994 A122402 A179008 * A174985 A008406 A039735

Adjacent sequences:  A255249 A255250 A255251 * A255253 A255254 A255255

KEYWORD

sign

AUTHOR

Michael Somos, Feb 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 17:08 EST 2021. Contains 349445 sequences. (Running on oeis4.)