The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034950 Expansion of eta(8z)*eta(16z)*theta_3(2z). 5
 1, 2, 0, 0, 1, -2, 0, 0, -4, -2, 0, 0, -3, 0, 0, 0, 4, -4, 0, 0, 0, 6, 0, 0, 1, 4, 0, 0, 4, 2, 0, 0, 0, -2, 0, 0, 4, -2, 0, 0, -3, 2, 0, 0, -4, -4, 0, 0, -4, 2, 0, 0, -8, -6, 0, 0, 8, -4, 0, 0, 1, -4, 0, 0, -4, 6, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 4, 8, 0, 0, 0, 6, 0, 0, 5, -2, 0, 0, 4, -2, 0, 0, 8, 4, 0, 0, -4, -8, 0, 0, -4, 8, 0, 0, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel) Ken Ono and Christopher Skinner, Fourier Coefficients of Half-Integral Weight Modular Forms Modulo l, Ann. Math., 147 (1998), 453-470. Michael Somos, Introduction to Ramanujan theta functions J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Euler transform of period 8 sequence [2, -3, 2, -2, 2, -3, 2, -3, ...]. - Michael Somos, Feb 16 2006 Expansion of q^(-1/2) * eta(q^2)^5 * eta(q^8) / (eta(q)^2 * eta(q^4)) in powers of q. - Michael Somos, Feb 16 2006 Expansion of psi(x)^2 * psi(-x^2) = phi(x) * psi(x^2) * psi(-x^2) = phi(x) * psi(x^4) * phi(-x^4) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 18 2015 G.f.: Product_{k>0} (1 + x^k)^2 * (1 - x^(2*k))^3 * (1 + x^(4*k)). - Michael Somos, Feb 16 2006 2 * a(n) = A080963(2*n + 1). a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Feb 18 2015 a(n) = A072069(n+1) - A072068(n+1)/2. - _Seichi Manymama_, Sep 30 2018 EXAMPLE G.f. = 1 + 2*x + x^4 - 2*x^5 - 4*x^8 - 2*x^9 - 3*x^12 + 4*x^16 - 4*x^17 + ... G.f. = q + 2*q^3 + q^9 - 2*q^11 - 4*q^17 - 2*q^19 - 3*q^25 + 4*q^33 - ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x] EllipticTheta[ 2, Pi/4, x] / Sqrt[8 x], {x, 0, n}]; (* Michael Somos, Feb 18 2015 *) QP = QPochhammer; s = QP[q^2]^5*(QP[q^8]/(QP[q]^2*QP[q^4])) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Feb 16 2006 */ CROSSREFS Cf. A072068, A072069, A080963. A bisection of A248394. Sequence in context: A143380 A143377 A367116 * A351127 A331816 A099584 Adjacent sequences: A034947 A034948 A034949 * A034951 A034952 A034953 KEYWORD sign AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 03:56 EDT 2024. Contains 372847 sequences. (Running on oeis4.)