OFFSET
0,4
COMMENTS
g = Product_{m=1..oo} ((1-q^(8*m))*(1-q^(16*m)),
theta(t) = Sum_{n=-oo..oo} (q^(t*n^2)).
Although the OEIS does not normally include sequences in which every other term is zero, this one is important enough to warrant an exception.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
From Seiichi Manyama, Sep 30 2018: (Start)
Let q = exp(Pi i t).
theta_3(q) = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + ... .
G.f.: (theta_3(q) - theta_3(q^4))*(theta_3(q^32) - theta_3(q^8)/2)*theta_3(q^2).
MAPLE
# This produces a list of the first 100 terms:
g:=q*mul((1-q^(8*m))*(1-q^(16*m)), m=1..30);
g:=series(g, q, 100);
th:=t->series( add(q^(t*n^2), n=-50..50), q, 100);
series(g*th(2), q, 100);
seriestolist(%);
# Alternative with https://oeis.org/transforms.txt and the Somos Euler transform in A034950:
p8 := [2, -3, 2, -2, 2, -3, 2, -3] ;
L := [seq(op(p8), i=1..10)] ;
EULER(%) ;
[1, op(%)] ;
[0, op(AERATE(%, 1))] ; # R. J. Mathar, Nov 11 2014
MATHEMATICA
QP = QPochhammer; s = q*QP[q^8]*QP[q^16]*EllipticTheta[3, 0, q^2] + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
CROSSREFS
The nonzero bisection is A034950, which has further information and references.
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Oct 18 2014
STATUS
approved