login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248395
q-Expansion of the modular form of weight 3/2, g*theta(4) in Tunnell's notation (see Comments).
14
0, 1, 0, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0
OFFSET
0,6
COMMENTS
g = Product_{m>=1} ((1-q^(8*m))*(1-q^(16*m)),
theta(t) = Sum_{n=-oo..oo} (q^(t*n^2)).
Although the OEIS does not normally include sequences in which only every fourth term is nonzero, this one is important enough to warrant an exception.
LINKS
J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
FORMULA
From G. C. Greubel, Jul 02 2018: (Start)
Expansion of eta(q^8)*eta(q^16)*theta_{3}(0, q^4)/q in powers of q.
Expansion of eta(q^8)^6/(q*eta(q^4)^2*eta(q^16)). (End)
MAPLE
# This produces a list of the first 100 terms:
g:=q*mul((1-q^(8*m))*(1-q^(16*m)), m=1..30);
g:=series(g, q, 100);
th:=t->series( add(q^(t*n^2), n=-50..50), q, 100);
series(g*th(4), q, 100);
seriestolist(%);
MATHEMATICA
QP := QPochhammer; a:= CoefficientList[Series[QP[q^8]*QP[q^16]* EllipticTheta[3, 0, q^4], {q, 0, 60}], q]; Join[{0}, Table[a[[n]], {n, 1, 50}]] (* G. C. Greubel, Jul 02 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q^8)^6/(q*eta(q^4)^2*eta(q^16)); concat([0], Vec(A)) \\ G. C. Greubel, Jul 02 2018
CROSSREFS
The nonzero quadrisection is A080966, which has further information and references.
Cf. A248394.
Used in A248397-A248406.
Sequence in context: A374247 A369165 A056170 * A059483 A067618 A279255
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Oct 18 2014
STATUS
approved