login
A368843
a(n) gives the number of triples of equally spaced 1's in the binary expansion of n.
3
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 2, 2, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 3, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 2, 2, 2, 3, 4, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 3, 0, 0, 0, 0, 1, 2, 1
OFFSET
0,16
FORMULA
a(2*n) = a(n).
a(2*n + 1) >= a(n).
EXAMPLE
For n = 277:
- the binary expansion of 277 is "100010101",
- we have the following triples: 1 1 1
1 1 1
- so a(277) = 2.
PROG
(PARI) a(n, t = 1, base = 2) = { my (d = digits(n, base), v = 0); for (i = 1, #d-2, if (d[i]==t, forstep (j = i+2, #d, 2, if (d[i]==d[j] && d[i]==d[(i+j)/2], v++; ); ); ); ); return (v); }
(Python)
def A368843(n):
l = len(s:=bin(n)[2:])
return sum(1 for i in range(l-2) for j in range(1, l-i+1>>1) if s[i:i+(j<<1)+1:j]=='111') # Chai Wah Wu, Jan 10 2024
CROSSREFS
Sequence in context: A249856 A086012 A248394 * A127268 A252459 A083918
KEYWORD
nonn,base,easy
AUTHOR
Rémy Sigrist, Jan 07 2024
STATUS
approved