login
A083918
Number of divisors of n that are congruent to 8 modulo 10.
11
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,48
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083917(n) - A083919(n).
G.f.: Sum_{k>=1} x^(8*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(8,10) - (1 - gamma)/10 = -0.176036..., gamma(8,10) = -(psi(4/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023
MATHEMATICA
Table[Count[Divisors[n], _?(Mod[#, 10]==8&)], {n, 110}] (* Harvey P. Dale, Sep 28 2016 *)
a[n_] := DivisorSum[n, 1 &, Mod[#, 10] == 8 &]; Array[a, 100] (* Amiram Eldar, Dec 30 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d % 10 == 8); \\ Amiram Eldar, Dec 30 2023
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 08 2003
STATUS
approved