login
A083895
Number of divisors of n with largest digit = 8 (base 10).
12
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,48
LINKS
FORMULA
a(n) = A000005(n) - A083888(n) - A083889(n) - A083890(n) - A083891(n) - A083892(n) - A083893(n) - A083894(n) - A083896(n) = A083903(n) - A083902(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A283611(k) = 11.62909500243165896645... . - Amiram Eldar, Jan 04 2024
EXAMPLE
n=72, 2 of the 12 divisors of 72 have largest digit =8: {8,18}, therefore a(72)=2.
MAPLE
f:= proc(n) nops(select(t -> max(convert(t, base, 10))=d, numtheory:-divisors(n))) end proc:
d:= 8:
map(f, [$1..200]); # Robert Israel, Oct 06 2019
MATHEMATICA
With[{k = 8}, Array[DivisorSum[#, 1 &, And[#[[k]] > 0, Total@ #[[k + 1 ;; 9]] == 0] &@ DigitCount[#] &] &, 105]] (* Michael De Vlieger, Oct 06 2019 *)
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, May 08 2003
STATUS
approved