|
|
A083888
|
|
Number of divisors of n with largest digit = 1 (base 10).
|
|
11
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,10
|
|
LINKS
|
|
|
FORMULA
|
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A007088(k) = 1.23840561530559480971... . - Amiram Eldar, Jan 04 2024
|
|
EXAMPLE
|
n=110, 4 of the divisors of 110 {1,2,5,10,11,22,55,110} have largest digit =1: {1,10,11,110}, therefore a(110)=4.
|
|
MAPLE
|
f:= proc(n) nops(select(t -> max(convert(t, base, 10))=d, numtheory:-divisors(n))) end proc:
d:= 1:
|
|
MATHEMATICA
|
With[{k = 1}, Array[DivisorSum[#, 1 &, And[#[[k]] > 0, Total@ #[[k + 1 ;; 9]] == 0] &@ DigitCount[#] &] &, 105]] (* Michael De Vlieger, Oct 06 2019 *)
|
|
PROG
|
(Magma) [#[d:d in Divisors(n) | Max(Intseq(d)) eq 1]: n in [1..110]]; // Marius A. Burtea, Oct 06 2019
|
|
CROSSREFS
|
Cf. A054055, A000005, A007088, A083889, A083890, A083891, A083892, A083893, A083894, A083895, A083896.
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|