|
|
A165735
|
|
Surviving integers under the double-count Josephus problem (see A054995), modulo 3.
|
|
0
|
|
|
1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Old name was: The pattern is obvious. The sequence can be divided into subsequences of {1,1,1,...} and {2,2,2,...}.
Let n be a natural number. We put n numbers in a circle, and we are going to remove every third number. Let J3(n) be the last number that remains. This is the traditional Josephus Problem. Let J3 (mod 3) be the residue of the sequence J3(n) under mod 3. J3 (mod 3) produces the sequence {1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,...}.
|
|
LINKS
|
|
|
FORMULA
|
(1) J3(1) = 1 and J3(2) = 2.
(2) J3(3m) = J3(2m) + [(J3(2m)-1)/2].
(3a) J3(3m+1) = 3m + 1 (if J3(2m + 1) = 1).
(3b) J3(3m+1) = J3(2m+1) + [J3(2m+1)/2] - 2 (if J3(2m + 1) > 1).
(4) J3(3m+2) = J3(2m+1) + [J3(2m+1)/2] + 1
|
|
EXAMPLE
|
If we use n = 10, then we put numbers 1,2,3,4,5,6,7,8,9,10 in a circle. We eliminate 3,6,9,2,7,1,8,5,10, and the last number that remains is 4. Therefore J3(10) = 4 and J3(10) = 1 mod 3.
|
|
MATHEMATICA
|
J3[1] = 1; J3[2] = 2; J3[n_] := J3[n] = Block[{m, t}, t = Mod[n, 3]; m = (n - t)/3; Which[t == 0, J3[2 m] + Floor[(J3[2 m] - 1)/2], t == 1, If[J3[2 m + 1] == 1, 3 m + 1, J3[2 m + 1] + Floor[J3[2 m + 1]/2] - 2], t == 2, J3[2 m + 1] + Floor[J3[2 m + 1]/2] + 1]]; Table[Mod[J3[n], 3], {n, 1, 200}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|