OFFSET
1,63
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Michael D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,8) - (1 - gamma)/8 = -0.212276..., gamma(7,8) = -(psi(7/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
EXAMPLE
a(A007522(i)) = 1, any i.
MAPLE
sigmamr := proc(n, m, r) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d, m) = r then a := a+1 ; end if; end do: a; end proc:
A188172 := proc(n) sigmamr(n, 8, 7) ; end proc:
MATHEMATICA
Table[Count[Divisors[n], _?(Mod[#, 8]==7&)], {n, 90}] (* Harvey P. Dale, Mar 08 2014 *)
PROG
(Haskell)
a188172 n = length $ filter ((== 0) . mod n) [7, 15..n]
-- Reinhard Zumkeller, Mar 26 2011
(PARI) a(n) = sumdiv(n, d, (d % 8) == 7); \\ Amiram Eldar, Nov 25 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 23 2011
STATUS
approved