login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A188172
Number of divisors d of n of the form d == 7 (mod 8).
10
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
1,63
LINKS
Michael D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
A188170(n)+a(n) = A001842(n).
A188169(n)+A188170(n)-A188171(n)-a(n) = A002325(n).
a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,8) - (1 - gamma)/8 = -0.212276..., gamma(7,8) = -(psi(7/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
EXAMPLE
a(A007522(i)) = 1, any i.
MAPLE
sigmamr := proc(n, m, r) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d, m) = r then a := a+1 ; end if; end do: a; end proc:
A188172 := proc(n) sigmamr(n, 8, 7) ; end proc:
MATHEMATICA
Table[Count[Divisors[n], _?(Mod[#, 8]==7&)], {n, 90}] (* Harvey P. Dale, Mar 08 2014 *)
PROG
(Haskell)
a188172 n = length $ filter ((== 0) . mod n) [7, 15..n]
-- Reinhard Zumkeller, Mar 26 2011
(PARI) a(n) = sumdiv(n, d, (d % 8) == 7); \\ Amiram Eldar, Nov 25 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 23 2011
STATUS
approved