login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188172 Number of divisors d of n of the form d == 7 (mod 8). 10
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,63

COMMENTS

a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

FORMULA

A188170(n)+a(n) = A001842(n).

A188169(n)+A188170(n)-A188171(n)-a(n) = A002325(n).

G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019

EXAMPLE

a(A007522(i)) = 1, any i.

MAPLE

sigmamr := proc(n, m, r) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d, m) = r then a := a+1 ; end if; end do: a; end proc:

A188172 := proc(n) sigmamr(n, 8, 7) ; end proc:

MATHEMATICA

Table[Count[Divisors[n], _?(Mod[#, 8]==7&)], {n, 90}] (* Harvey P. Dale, Mar 08 2014 *)

PROG

(Haskell)

a188172 n = length $ filter ((== 0) . mod n) [7, 15..n]

-- Reinhard Zumkeller, Mar 26 2011

CROSSREFS

Cf. A001842, A002325, A004771, A141164, A188169, A188170, A188171, A188226.

Sequence in context: A083895 A093488 A085858 * A106671 A033776 A117371

Adjacent sequences:  A188169 A188170 A188171 * A188173 A188174 A188175

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Mar 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 19:32 EDT 2021. Contains 345085 sequences. (Running on oeis4.)