login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188169
The number of divisors d of n of the form d == 1 (mod 8).
12
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2
OFFSET
1,9
COMMENTS
a(n) >= 1 as the divisor d=1 is always counted.
The largest terms up to n = 10^6 are each equal to 24. Those 8 terms are for n = 675675, 765765, 799425, 855855, 863379, 883575, 945945, or 987525. - Harvey P. Dale, May 31 2017
From David A. Corneth, Apr 06 2021: (Start)
a(n) can be computed from the prime factorization of n. Let v(n) = (n1, n3, n5, n7) where n_r is the number of divisors of n in class r (mod 8) (we do not care about even remainders). Then if gcd(k, m) = 1 we have v(k) = (k1, k3, k5, k7) so a(k) = k1, v(m) = (m1, m3, m5, m7) so a(m) = k1.
We have a(k*m) = (km)_1 = k1*m1 + k2*m2 + k3*m3 + k4*m4. The other (km)_3..(km)_7 have a similar expression.
If p == 1 (mod 8) then a(p^e) = e + 1 otherwise floor(e/2) + 1. (End)
LINKS
David A. Corneth, PARI program.
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
a(n) + A188171(n) = A001826(n).
G.f.: Sum_{k>=1} x^k/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
a(k) = a(2*k). - David A. Corneth, Apr 06 2021
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,8) - (1 - gamma)/8 = A256781 - (1 - A001620)/8 = 0.735783... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MAPLE
sigmamr := proc(n, m, r) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d, m) = r then a := a+1 ; end if; end do: a; end proc:
A188169 := proc(n) sigmamr(n, 8, 1) ; end proc:
MATHEMATICA
Table[Count[Divisors[n], _?(Mod[#, 8]==1&)], {n, 100}] (* Harvey P. Dale, May 31 2017 *)
PROG
(PARI) a(n) = {my(d = divisors(n)); #select(x -> x%8 == 1, d)} \\ David A. Corneth, Apr 06 2021
(PARI) See PARI link \\ David A. Corneth, Apr 06 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 23 2011
STATUS
approved