The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188171 The number of divisors d of n of the form d == 5 (mod 8). 10
 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,45 COMMENTS a(5n) >=1 as d=5 contributes to the count. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211. FORMULA A188169(n)+a(n) = A001826(n). A188169(n)+A188170(n)-a(n)-A188172(n) = A002325(n). G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019 EXAMPLE a(13) = 1 because the divisor d=13 is 8+5 == 5 (mod 8). MAPLE sigmamr := proc(n, m, r) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d, m) = r then a := a+1 ; end if; end do: a; end proc: A188171 := proc(n) sigmamr(n, 8, 5) ; end proc: PROG (PARI) A188171(n) = sumdiv(n, d, (5==(d%8)));  \\ Antti Karttunen, Jul 09 2017 CROSSREFS Cf. A001826, A002325, A188169, A188170, A188172. Sequence in context: A242830 A101668 A141846 * A330733 A328496 A035202 Adjacent sequences:  A188168 A188169 A188170 * A188172 A188173 A188174 KEYWORD nonn,easy AUTHOR R. J. Mathar, Mar 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 05:39 EDT 2021. Contains 346367 sequences. (Running on oeis4.)