|
|
A242830
|
|
For p = prime(n), a(n) = number of bases 1 < b < p such that b^(p-1) == 1 (mod p^2).
|
|
13
|
|
|
0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 1, 1, 3, 0, 0, 1, 1, 1, 1, 0, 2, 0, 3, 0, 2, 2, 2, 2, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 4, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
a(n) > 0 if and only if p is in A134307.
|
|
LINKS
|
|
|
MAPLE
|
p:= ithprime(n);
numboccur(1, [seq(b &^ (p-1) mod p^2, b=2..p-1)]);
end proc;
|
|
MATHEMATICA
|
a[n_] := With[{p = Prime[n]}, Length@Select[Range[2, p-1], PowerMod[#, p-1, p^2] == 1&]];
|
|
PROG
|
(PARI) i=0; forprime(p=2, 10^3, a=2; while(a<p, if(Mod(a, p^2)^(p-1)==1, i++); a++); print1(i, ", "); i=0)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|