login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244249 Table A(n,k) in which n-th row lists in increasing order all bases b to which p = prime(n) is a Wieferich prime (i.e., b^(p-1) is congruent to 1 mod p^2), read by antidiagonals. 15
5, 9, 8, 13, 10, 7, 17, 17, 18, 18, 21, 19, 24, 19, 3, 25, 26, 26, 30, 9, 19, 29, 28, 32, 31, 27, 22, 38, 33, 35, 43, 48, 40, 23, 40, 28, 37, 37, 49, 50, 81, 70, 65, 54, 28, 41, 44, 51, 67, 94, 80, 75, 62, 42, 14, 45, 46, 57, 68, 112, 89, 110, 68, 63, 41, 115 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts with:

p =  2:   5,  9, 13, 17,  21,  25,  29,  33, ...

p =  3:   8, 10, 17, 19,  26,  28,  35,  37, ...

p =  5:   7, 18, 24, 26,  32,  43,  49,  51, ...

p =  7:  18, 19, 30, 31,  48,  50,  67,  68, ...

p = 11:   3,  9, 27, 40,  81,  94, 112, 118, ...

p = 13:  19, 22, 23, 70,  80,  89,  99, 146, ...

p = 17:  38, 40, 65, 75, 110, 131, 134, 155, ...

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

MAPLE

A:= proc(n, k) option remember; local p, b;

      p:= ithprime(n);

      for b from 1 +`if`(k=1, 1, A(n, k-1))

        while b &^ (p-1) mod p^2<>1

      do od; b

    end:

seq(seq(A(n, 1+d-n), n=1..d), d=1..14);  # Alois P. Heinz, Jul 02 2014

MATHEMATICA

A[n_, k_] := A[n, k] = Module[{p, b}, p = Prime[n]; For[b = 1 + If[k == 1, 1, A[n, k-1]], PowerMod[b, p-1, p^2] != 1, b++]; b]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

PROG

(PARI) forprime(p=2, 10^1, print1("p=", p, ": "); for(a=2, 10^2, if(Mod(a, p^2)^(p-1)==1, print1(a, ", "))); print(""))

CROSSREFS

Cf. A001220, A185103.

First column of table is A039678.

Sequence in context: A077771 A019754 A315120 * A123600 A063623 A085566

Adjacent sequences:  A244246 A244247 A244248 * A244250 A244251 A244252

KEYWORD

nonn,tabl

AUTHOR

Felix Fröhlich, Jun 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 19:47 EDT 2021. Contains 343746 sequences. (Running on oeis4.)