login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280721
a(n) is the n-th b > 1 such that p = prime(n) satisfies b^(p-1) == 1 (mod p^2).
2
5, 10, 24, 31, 81, 89, 134, 127, 255, 267, 430, 476, 744, 424, 629, 895, 1105, 1079, 1301, 1331, 1440, 2092, 1451, 2466, 2488, 2140, 3326, 2638, 2815, 3517, 4345, 4138, 4505, 4659, 5571, 6021, 5383, 5460, 6071, 6844, 8434, 7076, 8961, 10215, 7522, 9817, 11499
OFFSET
1,1
COMMENTS
Main diagonal of A244249.
There are exactly p-1 residue classes b mod p^2 for which b^(p-1) == 1 (mod p^2), of which p-2 will be greater than 1. p-2 > n for n > 3, so a(n) < prime(n)^2 for n > 2 (case n = 3 is fortuitous). - Charles R Greathouse IV, Jun 23 2021
LINKS
FORMULA
a(n) < prime(n)^2 for n > 2, see comments. - Charles R Greathouse IV, Jun 23 2021
EXAMPLE
For n=2, prime(2)=3, 10^1 == 1 (mod 9), 10^2 == 1 (mod 9), a(2) = 10. - N. J. A. Sloane, Jan 14 2017
MAPLE
f:= proc(n) local p, S, nS, r;
p:= ithprime(n);
S:= sort(map(t -> rhs(op(t)), [msolve(b^(p-1)=1, p^2)]));
nS:= nops(S);
r:= (n mod nS)+1;
S[r] + (n+1-r)/nS*p^2;
end proc:
map(f, [$1..100]); # Robert Israel, Jan 09 2017
MATHEMATICA
Table[Function[p, Select[Range[p^2 + 1], PowerMod[#, p - 1, p^2] == 1 &][[n + 1]]]@ Prime@ n, {n, 47}] (* Michael De Vlieger, Jan 09 2017 *)
PROG
(PARI) base(p, n) = my(b=2, i=0); while(1, if(Mod(b, p^2)^(p-1)==1, i++); if(i==n, return(b)); b++)
a(n) = base(prime(n), n)
CROSSREFS
Sequence in context: A197174 A098112 A237435 * A300552 A358259 A037240
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jan 07 2017
STATUS
approved