login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242829
Integers n such that each of n, n+1, n+2, n+4, n+5, n+6 is the squarefree product of five primes.
4
6639266409, 8628052209, 12692281897, 14492398389, 15798643881, 18883291565, 20404935965, 20825703713, 21342970293, 21597222381, 22221458853, 22567169229, 22578915665, 23000623161, 23198162685, 23247729109, 24163642653, 24802386189, 24894100941, 26297281109
OFFSET
1,1
COMMENTS
This is a higher analog to A242804, A242805, A242806.
It is very tough to compute this sequence on a single machine. Therefore, the interval from 0 to 9*10^9 was subdivided into 9 partial intervals, of length 10^9 each, and scanned by different computers. Nevertheless the CPU time was extrapolated for a single machine and summed up to 30 hours for the first member 6639266409 and 47 hours (~2 days) for the second member 8628052209. Up to 10^10, there is no occurrence of a next term.
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..195
EXAMPLE
a(1) = 6639266409 = 3 * 29 * 109 * 421 * 1663,
6639266410 = 2 * 5 * 7 * 113 * 839351,
6639266411 = 17 * 23 * 89 * 101 * 1889,
6639266413 = 13 * 61 * 79 * 131 * 809,
6639266414 = 2 * 11 * 349 * 857 * 1009,
6639266415 = 3 * 5 * 73 * 149 * 40693;
and
a(2) = 8628052209 = 3 * 7 * 19 * 863 * 25057,
8628052210 = 2 * 5 * 251 * 953 * 3607,
8628052211 = 17 * 43 * 179 * 233 * 283,
8628052213 = 11 * 47 * 127 * 331 * 397,
8628052214 = 2 * 53 * 107 * 131 * 5807,
8628052215 = 3 * 5 * 23 * 31 * 806737.
PROG
(PARI)
{ default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=5; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1<n, loc=1; i=n; ); ); if(3==loc, if(j+1==n, k=n; ); if(j+1<n, loc=1; i=n; ); ); if(4==loc, if(k+2==n, l=n; ); if(k+2<n, loc=1; i=n; ); ); if(5==loc, if(l+1==n, m=n; ); if(l+1<n, loc=1; i=n; ); ); if(6==loc, if(m+1==n, print1(i, ", "); loc=0; ); if(m+1<n, loc=1; i=n; ); ); ); ); }
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Jens Kruse Andersen, Jun 18 2014
STATUS
approved