The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242793 The minimal integer x such that each of the six integers x, x+1, x+2, x+4, x+5, x+6 is squarefree with exactly n prime divisors. 4
 213, 73293, 9743613, 6639266409 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS This is the next step in my project to study the distribution of increasingly extensive clusters of squarefree integers with fixed number of prime divisors: triples x,x+1,x+2 were investigated in A242492 and here we study sextets x,x+1,x+2,x+4,x+5,x+6 with a central gap x+3, since x+3 must be divisible by the square 4. The term 6639266409 required 30 hours of CPU time on an iMac with Intel i7 Quadcore CPU running OS X Lion. LINKS Table of n, a(n) for n=2..5. EXAMPLE 213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73; 73293=3*11*2221, 73294=2*13*2819, 73295=5*107*137, 73297=7*37*283, 73298=2*67*547, 73299=3*53*461; 9743613=3*11*503*587, 9743614=2*59*71*1163, 9743615= 5*7*167*1667, 9743617=13*37*47*431, 9743618=2*17*19*15083, 9743619=3*83*109*359; 6639266409=3*29*109*421*1663, 6639266410=2*5*7*113*839351, 6639266411=17*23*89*101*1889, 6639266413=13*61*79*131*809, 6639266414=2*11*349*857*1009, 6639266415=3*5*73*149*40693. PROG (PARI) { default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=1; while(o<5, o=o+1; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 14 12:31 EDT 2024. Contains 375921 sequences. (Running on oeis4.)