login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242795 a(n) = [x^n] ( 1 + x*A(x)^(n+1) )^(n+1) / (n+1) for n>=0, with a(0)=1. 1
1, 1, 4, 35, 466, 8072, 168330, 4045603, 109089538, 3242538284, 104946776716, 3665946814257, 137291732981170, 5483948111154008, 232660368810666229, 10447887814670412307, 495139557493903545618, 24699919104193662112382, 1293980412831022073519196 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to the g.f. G(x) = x + x*G(G(x)) of A030266 that satisfies:

A030266(n+1) = [x^n] ( 1 + G(x) )^(n+1) / (n+1) for n>=0.

LINKS

Table of n, a(n) for n=0..18.

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 35*x^3 + 466*x^4 + 8072*x^5 + 168330*x^6 +...

Form a table of coefficients of x^k in (1 + x*A(x)^(n+1))^(n+1) like so:

n=0: [1,  1,   1,    4,    35,    466,    8072,   168330, ...];

n=1: [1,  2,   5,   22,   178,   2228,   37141,   755702, ...];

n=2: [1,  3,  12,   64,   516,   6126,   97725,  1929927, ...];

n=3: [1,  4,  22,  140,  1177,  13548,  206876,  3946612, ...];

n=4: [1,  5,  35,  260,  2330,  26626,  391830,  7202170, ...];

n=5: [1,  6,  51,  434,  4185,  48432,  694714, 12312642, ...];

n=6: [1,  7,  70,  672,  6993,  83174, 1178310, 20224653, ...];

n=7: [1,  8,  92,  984, 11046, 136392, 1932876, 32364824, ...];

n=8: [1,  9, 117, 1380, 16677, 215154, 3084024, 50833962, ...];

n=9: [1, 10, 145, 1870, 24260, 328252, 4801655, 78652350, ...]; ...

then this sequence is formed from the main diagonal:

[1/1, 2/2, 12/3, 140/4, 2330/5, 48432/6, 1178310/7, 32364824/8, ...].

PROG

(PARI) {a(n)=local(A=[1, 1]); for(m=1, n, A=concat(A, 0); A[m+1]=Vec((1+x*Ser(A)^(m+1))^(m+1))[m+1]/(m+1)); A[n+1]}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A242794.

Sequence in context: A183878 A132694 A270917 * A287886 A224797 A143669

Adjacent sequences:  A242792 A242793 A242794 * A242796 A242797 A242798

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 08:54 EDT 2020. Contains 333313 sequences. (Running on oeis4.)