login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242798
Expansion of -x*d(log((1-x*(2/sqrt(3*x)) * sin((1/3) * arcsin(sqrt(27*x/4))))))/dx.
5
0, 1, 3, 13, 67, 376, 2211, 13378, 82499, 515659, 3255628, 20714354, 132611491, 853226921, 5512508382, 35739673513, 232405291587, 1515159860388, 9900216370689, 64816750480666, 425097621975692, 2792332673312356, 18367642416256334, 120972943783673953
OFFSET
0,3
LINKS
Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
FORMULA
a(n) = n*Sum_{k=1..n} binomial(3*n-2*k-1,n-k)/(2*n-k).
G.f.: x*(x*F'(x)+F(x))/(1-x*F(x)), where F(x) is g.f. of A001764.
D-finite with recurrence: 2*(n-1)*(2*n-1)*(91*n^3 - 531*n^2 + 962*n - 516)*a(n) = (2821*n^5 - 21921*n^4 + 62005*n^3 - 75435*n^2 + 33274*n - 24)*a(n-1) - (2821*n^5 - 21921*n^4 + 62005*n^3 - 75435*n^2 + 33274*n - 24)*a(n-2) + 3*(3*n - 8)*(3*n - 7)*(91*n^3 - 258*n^2 + 173*n + 6)*a(n-3). - Vaclav Kotesovec, Sep 21 2015
a(n) ~ 3^(3*n-1/2) / (7 * sqrt(Pi*n) * 4^n). - Vaclav Kotesovec, Sep 21 2015
From Peter Luschny, Jan 25 2019: (Start)
a(n) = (n/(2*n-1))*C(3*n-3, n-1)*(3F2)([1, 1-2*n, 1-n], [3/2-3*n/2, 2-3*n/2], 1/4).
a(n) = [x^n] (2/(1 + sqrt(1 - 4*x)))^n*(x/(1 - x)). (End)
MAPLE
ogf := n -> ((1 - sqrt(1 - 4*x))/(2*x))^n*x/(1 - x):
ser := n -> series(ogf(n), x, 46):
seq(coeff(ser(n), x, n), n=0..23); # Peter Luschny, Jan 25 2019
MATHEMATICA
Table[n*Sum[Binomial[3*n - 2*k - 1, n - k]/(2*n - k), {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 21 2015 *)
Table[(n Binomial[3 n - 3, n - 1] HypergeometricPFQ[{1, 1 - 2 n, 1 - n}, {3/2 - (3 n)/2, 2 - (3 n)/2}, 1/4])/(2 n - 1), {n, 0, 23}] (* Peter Luschny, Jan 25 2019 *)
PROG
(Maxima)
a(n):=n*sum(binomial(3*n-2*k-1, n-k)/(2*n-k), k, 1, n);
(PARI) a(n) = n*sum(k=1, n, binomial(3*n-2*k-1, n-k)/(2*n-k)); \\ Michel Marcus, Nov 12 2022
CROSSREFS
Sequence in context: A136784 A284717 A027277 * A239198 A234282 A366011
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 22 2014
EXTENSIONS
Name edited by Michel Marcus, Jan 26 2019
STATUS
approved