The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242798 Expansion of -x*d(log((1-x*(2/sqrt(3*x)) * sin((1/3) * arcsin(sqrt(27*x/4))))))/dx. 5
 0, 1, 3, 13, 67, 376, 2211, 13378, 82499, 515659, 3255628, 20714354, 132611491, 853226921, 5512508382, 35739673513, 232405291587, 1515159860388, 9900216370689, 64816750480666, 425097621975692, 2792332673312356, 18367642416256334, 120972943783673953 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 P. Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1. FORMULA a(n) = n*Sum_{k=1..n} binomial(3*n-2*k-1,n-k)/(2*n-k). G.f.: x*(x*F'(x)+F(x))/(1-x*F(x)), where F(x) is g.f. of A001764. D-finite with recurrence: 2*(n-1)*(2*n-1)*(91*n^3 - 531*n^2 + 962*n - 516)*a(n) = (2821*n^5 - 21921*n^4 + 62005*n^3 - 75435*n^2 + 33274*n - 24)*a(n-1) - (2821*n^5 - 21921*n^4 + 62005*n^3 - 75435*n^2 + 33274*n - 24)*a(n-2) + 3*(3*n - 8)*(3*n - 7)*(91*n^3 - 258*n^2 + 173*n + 6)*a(n-3). - Vaclav Kotesovec, Sep 21 2015 a(n) ~ 3^(3*n-1/2) / (7 * sqrt(Pi*n) * 4^n). - Vaclav Kotesovec, Sep 21 2015 From Peter Luschny, Jan 25 2019: (Start) a(n) = (n/(2*n-1))*C(3*n-3, n-1)*(3F2)([1, 1-2*n, 1-n], [3/2-3*n/2, 2-3*n/2], 1/4). a(n) = [x^n] (2/(1 + sqrt(1 - 4*x)))^n*(x/(1 - x)). (End) MAPLE ogf := n -> ((1 - sqrt(1 - 4*x))/(2*x))^n*x/(1 - x): ser := n -> series(ogf(n), x, 46): seq(coeff(ser(n), x, n), n=0..23); # Peter Luschny, Jan 25 2019 MATHEMATICA Table[n*Sum[Binomial[3*n - 2*k - 1, n - k]/(2*n - k), {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 21 2015 *) Table[(n Binomial[3 n - 3, n - 1] HypergeometricPFQ[{1, 1 - 2 n, 1 - n}, {3/2 - (3 n)/2, 2 - (3 n)/2}, 1/4])/(2 n - 1), {n, 0, 23}] (* Peter Luschny, Jan 25 2019 *) PROG (Maxima) a(n):=n*sum(binomial(3*n-2*k-1, n-k)/(2*n-k), k, 1, n); CROSSREFS Cf. A001764, A174687. Sequence in context: A136784 A284717 A027277 * A239198 A234282 A200754 Adjacent sequences:  A242795 A242796 A242797 * A242799 A242800 A242801 KEYWORD nonn AUTHOR Vladimir Kruchinin, May 22 2014 EXTENSIONS Name edited by Michel Marcus, Jan 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 05:23 EST 2020. Contains 332086 sequences. (Running on oeis4.)