|
|
A242797
|
|
Numbers n such that (45^n - 1)/44 is prime.
|
|
5
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(7) > 10^5.
Numbers corresponding to a(4)-a(6) are probable primes.
All terms are prime.
|
|
LINKS
|
Table of n, a(n) for n=1..7.
Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
Henri Lifchitz, Mersenne and Fermat primes field
|
|
MAPLE
|
A242797:=n->`if`(isprime((45^n - 1)/44), n, NULL); seq(A242797(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
|
|
MATHEMATICA
|
Select[Prime[Range[100000]], PrimeQ[(45^# - 1)/44] &]
|
|
PROG
|
(PARI) is(n)=ispseudoprime((45^n-1)/44) \\ Charles R Greathouse IV, Feb 20 2017
|
|
CROSSREFS
|
Cf. A028491, A004061, A004062, A004063, A004023, A005808, A004064, A016054, A006032, A006033, A006034, A006035, A127995, A127996, A127997, A127998, A127999, A098438, A128002, A128003, A128004, A128005, A240765.
Sequence in context: A024848 A240136 A072581 * A142072 A221594 A288144
Adjacent sequences: A242794 A242795 A242796 * A242798 A242799 A242800
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
Robert Price, May 22 2014
|
|
EXTENSIONS
|
a(7)=216551 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020
|
|
STATUS
|
approved
|
|
|
|