|
|
A128002
|
|
Numbers n such that (31^n - 1)/30 is prime.
|
|
9
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
9973 is a term found by Richard Fischer in 2004. - Alexander Adamchuk, Feb 11 2007
No other terms < 101833. - Robert Price, Nov 26 2011
|
|
LINKS
|
Table of n, a(n) for n=1..7.
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
H. Lifchitz, Mersenne and Fermat primes field
Index to primes in various ranges, form ((k+1)^n-1)/k
|
|
MATHEMATICA
|
Select[Prime[Range[100]], PrimeQ[(31^#-1)/30]&]
|
|
PROG
|
(PARI) is(n)=ispseudoprime((31^n-1)/30) \\ Charles R Greathouse IV, Feb 17 2017
|
|
CROSSREFS
|
Sequence in context: A319304 A144861 A066436 * A301695 A301725 A278920
Adjacent sequences: A127999 A128000 A128001 * A128003 A128004 A128005
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
Alexander Adamchuk, Feb 11 2007
|
|
EXTENSIONS
|
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(6) = 101111 by Robert Price, Nov 26 2011
a(7) = 535571 from Alexander Zhirkov, added by Paul Bourdelais, Jan 28 2021
|
|
STATUS
|
approved
|
|
|
|