OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..356
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. satisfies: log(A(x)) = (1 - exp(-x)) * A(x)^2.
E.g.f.: exp( -LambertW(2 * (exp(-x) - 1))/2 ).
G.f.: Sum_{k>=0} (2*k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ sqrt(2*exp(1) - 1) * sqrt(log(2/(2-exp(-1)))) * n^(n-1) / (2 * exp(n - 1/2) * (1 + log(2/(2*exp(1) - 1)))^n). - Vaclav Kotesovec, Nov 21 2021
MATHEMATICA
a[n_] := Sum[(-1)^(n - k) * (2*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Nov 27 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*(2*k+1)^(k-1)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*(exp(-x)-1))/2)))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (2*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 20 2021
STATUS
approved