OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = Sum_{n>=0} Sum_{k=0..n} Stirling2(n, k)*A(x)^(n*k) * x^n/n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 35*x^3/3! + 503*x^4/4! + 10207*x^5/5! +...
where
A(x) = 1 + (exp(x*A(x)) - 1) + (exp(x*A(x)^2) - 1)^2/2! + (exp(x*A(x)^3) - 1)^3/3! + (exp(x*A(x)^4) - 1)^4/4! + (exp(x*A(x)^5) - 1)^5/5! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (exp(x*A^m +x*O(x^n))-1)^m/m!)); n!*polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
(PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling2(m, k)*(A+x*O(x^n))^(m*k))*x^m/m!)); n!*polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2013
STATUS
approved