The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224797 E.g.f. satisfies: A(x) = Sum_{n>=0} (exp(x*A(x)^n) - 1)^n / n!. 1
 1, 1, 4, 35, 503, 10207, 268865, 8731102, 337630732, 15165277773, 776576049655, 44683002944571, 2855602714004089, 200794017101260026, 15413426272667102594, 1283152929854467388195, 115198576226248396583523, 11099504126776462035978911 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..17. FORMULA E.g.f. satisfies: A(x) = Sum_{n>=0} Sum_{k=0..n} Stirling2(n, k)*A(x)^(n*k) * x^n/n!. EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 35*x^3/3! + 503*x^4/4! + 10207*x^5/5! +... where A(x) = 1 + (exp(x*A(x)) - 1) + (exp(x*A(x)^2) - 1)^2/2! + (exp(x*A(x)^3) - 1)^3/3! + (exp(x*A(x)^4) - 1)^4/4! + (exp(x*A(x)^5) - 1)^5/5! +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (exp(x*A^m +x*O(x^n))-1)^m/m!)); n!*polcoeff(A, n)} for(n=0, 21, print1(a(n), ", ")) (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling2(m, k)*(A+x*O(x^n))^(m*k))*x^m/m!)); n!*polcoeff(A, n)} for(n=0, 21, print1(a(n), ", ")) CROSSREFS Cf. A189981. Sequence in context: A349527 A287886 A342207 * A143669 A349656 A180716 Adjacent sequences: A224794 A224795 A224796 * A224798 A224799 A224800 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)