The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189981 E.g.f. satisfies: A(x) = Sum_{n>=0} log(1 + x*A(x)^n)^n/n!. 8
 1, 1, 2, 12, 120, 1600, 28500, 621138, 16017792, 480474720, 16390969920, 626786792280, 26584872779520, 1238524175509608, 62873918454756864, 3455537675553482400, 204449393824639488000, 12958008875933613962880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The definition of the e.g.f. A(x) is an application of the identity: * Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} binomial(q^n, n)*x^n at q = A(x). Consider the function G(x) such that G(x) = 1 + x*G(x)^p, then * G(x) = Sum_{n>=0} log(1 + x*G(x)^p)^n/n! (trivially), and * G(x) = Sum_{n>=0} binomial(p*n+1,n)*x^n/(p*n+1) for fixed p; does an analogous expression exist for the e.g.f. of this sequence? Note that terms a(70)-a(83) are negative. - Vaclav Kotesovec, Jul 13 2014 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..106 FORMULA E.g.f. also satisfies: (1) A(x) = Sum_{n>=0} binomial(A(x)^n, n) * x^n. (2) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} Stirling1(n,k) * A(x)^(n*k)/n!. EXAMPLE E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1600*x^5/5! +... where A(x) satisfies: A(x) = 1 + log(1 + x*A(x)) + log(1 + x*A(x)^2)^2/2! + log(1 + x*A(x)^3)^3/3! +... The e.g.f. also satisfies: A(x) = 1 + A(x)*x + A(x)^2*(A(x)^2-1)*x^2/2! + A(x)^3*(A(x)^3-1)*(A(x)^3-2)*x^3/3! + A(x)^4*(A(x)^4-1)*(A(x)^4-2)*(A(x)^4-3)*x^4/4! +...+ binomial(A(x)^n, n)*x^n +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, log(1+x*(A+x*O(x^n))^m)^m/m!)); n!*polcoeff(A, n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, binomial((A+x*O(x^n))^m, m)*x^m)); n!*polcoeff(A, n)} (PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling1(m, k)*(A+x*O(x^n))^(m*k))*x^m/m!)); n!*polcoeff(A, n)} CROSSREFS Cf. A014070, A221101, A224797. Sequence in context: A134095 A204042 A302702 * A326000 A245067 A052680 Adjacent sequences:  A189978 A189979 A189980 * A189982 A189983 A189984 KEYWORD sign AUTHOR Paul D. Hanna, May 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 19:34 EDT 2021. Contains 347694 sequences. (Running on oeis4.)