login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342207
a(n) = U(n,n+1) where U(n,x) is a Chebyshev polynomial of the second kind.
2
1, 4, 35, 496, 9701, 241956, 7338631, 262184896, 10783446409, 501827040100, 26069206375211, 1495427735314800, 93885489910449901, 6403169506981578436, 471427031236487965199, 37265225545829174607616, 3147895910861898495432209
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (2*n)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (2*n)^k * binomial(n+1+k,2*k+1).
a(n) ~ exp(1) * 2^n * n^n. - Vaclav Kotesovec, Mar 05 2021
MATHEMATICA
Table[ChebyshevU[n, n + 1], {n, 0, 16}] (* Amiram Eldar, Mar 05 2021 *)
PROG
(PARI) a(n) = polchebyshev(n, 2, n+1);
(PARI) a(n) = sum(k=0, n, (2*n)^(n-k)*binomial(2*n+1-k, k));
(PARI) a(n) = sum(k=0, n, (2*n)^k*binomial(n+1+k, 2*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2021
STATUS
approved