The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349525 a(n) = Sum_{k=0..n} (3*k+1)^(k-1) * Stirling2(n,k). 7
 1, 1, 8, 122, 2847, 90112, 3611162, 175352515, 10009442658, 656934750150, 48744407335597, 4035143806865514, 368706775967717518, 36861117438297883213, 4002400525694764367212, 469049713401827161071110, 59010099414303871987517111, 7932542361585921797125908876 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..331 FORMULA E.g.f.: (-LambertW(3*(-exp(x) + 1)) / (3*(exp(x) - 1)))^(1/3). E.g.f.: exp(-LambertW(3 - 3*exp(x))/3). a(n) ~ c * d^n * n! / n^(3/2), where d = 1/log(1 + 1/(3*exp(1))) and c = exp(1/3) * sqrt((1 + 3*exp(1)) * log(1 + 1/(3*exp(1))) / (2*Pi))/3 = 0.190981550465823640438134269765128596177617920807463710992027181154754728... a(n) ~ sqrt(1 + 3*exp(1)) * n^(n-1) / (3*exp(n - 1/3) * log(1 + 1/(3*exp(1)))^(n - 1/2)). E.g.f. satisfies: log(A(x)) = (exp(x) - 1) * A(x)^3. G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k/Product_{j=1..k} (1 - j*x). - Seiichi Manyama, Nov 20 2021 MAPLE b:= proc(n, m) option remember; `if`(n=0,      (3*m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))     end: a:= n-> b(n, 0): seq(a(n), n=0..24);  # Alois P. Heinz, Jul 29 2022 MATHEMATICA Table[Sum[(3*k+1)^(k-1)*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}] nmax = 20; CoefficientList[Series[(-LambertW[3*(-E^x + 1)]/(3*(E^x - 1)))^(1/3), {x, 0, nmax}], x] * Range[0, nmax]! PROG (PARI) a(n) = sum(k=0, n, (3*k+1)^(k-1)*stirling(n, k, 2)); \\ Seiichi Manyama, Nov 20 2021 (PARI) N=20; x='x+O('x^N); Vec(sum(k=0, N, (3*k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Nov 20 2021 CROSSREFS Cf. A000110, A008277, A052880, A349505, A349524. Sequence in context: A196972 A197559 A222498 * A240477 A195247 A239755 Adjacent sequences:  A349522 A349523 A349524 * A349526 A349527 A349528 KEYWORD nonn AUTHOR Vaclav Kotesovec, Nov 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 23:13 EDT 2022. Contains 356204 sequences. (Running on oeis4.)