login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349525
a(n) = Sum_{k=0..n} (3*k+1)^(k-1) * Stirling2(n,k).
9
1, 1, 8, 122, 2847, 90112, 3611162, 175352515, 10009442658, 656934750150, 48744407335597, 4035143806865514, 368706775967717518, 36861117438297883213, 4002400525694764367212, 469049713401827161071110, 59010099414303871987517111, 7932542361585921797125908876
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (-LambertW(3*(-exp(x) + 1)) / (3*(exp(x) - 1)))^(1/3).
E.g.f.: exp(-LambertW(3 - 3*exp(x))/3).
a(n) ~ c * d^n * n! / n^(3/2), where d = 1/log(1 + 1/(3*exp(1))) and c = exp(1/3) * sqrt((1 + 3*exp(1)) * log(1 + 1/(3*exp(1))) / (2*Pi))/3 = 0.190981550465823640438134269765128596177617920807463710992027181154754728...
a(n) ~ sqrt(1 + 3*exp(1)) * n^(n-1) / (3*exp(n - 1/3) * log(1 + 1/(3*exp(1)))^(n - 1/2)).
E.g.f. satisfies: log(A(x)) = (exp(x) - 1) * A(x)^3.
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k/Product_{j=1..k} (1 - j*x). - Seiichi Manyama, Nov 20 2021
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
(3*m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Jul 29 2022
MATHEMATICA
Table[Sum[(3*k+1)^(k-1)*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[(-LambertW[3*(-E^x + 1)]/(3*(E^x - 1)))^(1/3), {x, 0, nmax}], x] * Range[0, nmax]!
PROG
(PARI) a(n) = sum(k=0, n, (3*k+1)^(k-1)*stirling(n, k, 2)); \\ Seiichi Manyama, Nov 20 2021
(PARI) N=20; x='x+O('x^N); Vec(sum(k=0, N, (3*k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Nov 20 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 20 2021
STATUS
approved